Hyperfine Interactions and Slow Spin Dynamics in Quasi-isotropic InP-based Core/Shell Colloidal Nanocrystals
نویسندگان
چکیده
منابع مشابه
Excited-State Dynamics in Colloidal Semiconductor Nanocrystals
Colloidal semiconductor nanocrystals have attracted continuous worldwide interest over the last three decades owing to their remarkable and unique size- and shape-, dependent properties. The colloidal nature of these nanomaterials allows one to take full advantage of nanoscale effects to tailor their optoelectronic and physical-chemical properties, yielding materials that combine size-, shape-,...
متن کاملMössbauer study of the hyperfine interactions and spin dynamics in -iron(II) phthalocyanine
The Fe Mössbauer spectroscopy on -iron II phthalocyanine FePc as a function of temperature 1.3 T 295 K and applied field 0 B 10 T has been used to study the peculiar magnetic properties of this ferromagnetic quasilinear chain type compound. One sextet with an internal hyperfine field Bint=66.2 T was observed at 1.3 K, a very large value for a bivalent iron with S=1 pointing to the existence of ...
متن کاملColloidal synthesis of germanium nanocrystals
In this study, colloidal germanium nanocrystals were synthesized by a simple and novel method, and their optical properties were also studied. Polyvinyl alcohol (PVA) as a surface modifier was used to control the optical properties of colloidal Ge nanocrystals. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the various functional groups present in the sample. ...
متن کاملSlow dynamics of a colloidal lamellar phase.
We used x-ray photon correlation spectroscopy to study the dynamics in the lamellar phase of a platelet suspension as a function of the particle concentration. We measured the collective diffusion coefficient along the director of the phase, over length scales down to the interparticle distance, and quantified the hydrodynamic interaction between the particles. This interaction sets in with inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Nano
سال: 2019
ISSN: 1936-0851,1936-086X
DOI: 10.1021/acsnano.9b03384